7.4 \#25-28, 33,34,59
7.5 \#1-3, 9-11, 43,45,47

only solve for $0 \leq \theta<\mathbf{2} \pi$

1. Using a Pythagorean identity we see that the equation $\sin x+\sin ^{2} x+\cos ^{2} x=1$ is equivalent to the basic equation $\sin x+1=1$
$\sin x=0 \quad$ whose solutions are $x=0, \pi$

Use Pythagorean and Double Angle identities to rewrite the given equations in 7.5 , then factor and solve.
only solve for $0 \leq \theta<2 \pi$
2. Using a Double Angle identity we see that the equation $\sin x+\sin 2 x=0$ is equivalent to the equation $\sin x+2 \sin x \cos x$
Factoring, we see that solving this equation is equivalent to solving two basic equations $\sin x=0$ and $+2 \cos x=0$ $\sin x(1+2 \cos x)=0$

Use Pythagorean and Double Angle identities to rewrite the given equations in 7.5, then factor and solve.
7.4 \#25-28, 33,34,59
7.5 \#1-3, 9-11, 43,45,47
only solve for $0 \leq \theta<2 \pi$

$$
\begin{array}{ll}
\text { 3. } \left.2 \cos ^{2} \theta\right)+\sin \theta=1 & \text { *Pythagorean Identities: } \\
2\left(1-\sin ^{2} \theta\right)+\sin \theta=1 & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
2 \cos ^{2} \theta=1-\sin ^{2} \theta \\
-2 \sin ^{2} \theta+\sin \theta-1=0 & \\
2 \sin ^{2} \theta+\sin \theta+1=0 \text { multiply by }-1 \\
\left(\begin{array}{c}
2
\end{array}\right)(\sin \theta-1=0 \text { now factor } \\
\text { (FOIL) }
\end{array}
$$

CHECK EVEN AND ODD ANSWERS

7.4 \#25-28, 33,34,59
7.5 \#1-3, 9-11, 43,45,47

ONLY solve for specific solutions in the interval: $0 \leq \theta<2 \pi$
(NO general solutions: you don't have to use $2 \pi \mathrm{k}$)

CHECK 7.4 \#25-28, 33, 34:
(odds and evens are included)

$$
\begin{array}{lllll}
\frac{3 \pi}{2} & \frac{\pi}{3} & \frac{2 \pi}{3} & \frac{4 \pi}{3} & \frac{5 \pi}{3} \\
\frac{\pi}{4} & \frac{\pi}{4} & \frac{3 \pi}{4} & \frac{5 \pi}{4} & \frac{5 \pi}{4} \\
\frac{7 \pi}{4} & \frac{7 \pi}{4} & \frac{7 \pi}{4} & \pi &
\end{array}
$$

$\# 59 \rightarrow$ use degrees
(check answers in book)

CHECK 7.5 \#1-3, 9-11: (odds and evens are included)

0	π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{5 \pi}{3}$

$\begin{array}{llll}\frac{\pi}{4} & \frac{3 \pi}{4} & \frac{5 \pi}{4} & \frac{7 \pi}{4}\end{array}$
$\frac{\pi}{6} \quad \frac{5 \pi}{6} \quad \frac{7 \pi}{6} \quad \frac{11 \pi}{6}$

